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Development and mechanical-functional validation of 3D-printed 
laparoscopic forceps

Desenvolvimento e validação mecânico-funcional de pinça laparoscópica 
impressa em 3 dimensões

	 INTRODUCTION

Three-dimensional (3D) printing allows additive 

manufacturing through digital models designed on 

a computer1,2. Its creation in the 1980s was an industrial 

milestone, having diversified and advanced in relation 

to new equipment and printing materials, ranging from 

plastic polymers to metals to bioprinting with cells3,4.

In the health field, one of the most studied 

uses of 3D printing is the development and plastic 

prototyping of surgical forceps, since this advent 

enables to easily customize and adapt these materials, 

making them lighter and more comfortable, both for 

the surgeon and for the patient5,6.

In parallel to the development of forceps, 

3D printing can also innovate in medical training, as 

it allows the diversification of tools already used in 

simulators and teaching models with plastic7-9.

Given the mentioned benefits and the 

constant evolution of this technology, the present study 

aims to demonstrate the development, 3D printing, 

and mechanical-functional validation of a laparoscopic 

grasping forceps model called Easylap.

	 METHODS

Development and printing

This is a technological development study, in 

which the authors modeled Easylap using the Siemens’ 

Solid Edge software, version 2022. The product design 

(Figure 1) aimed at incorporating traditional models 
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deformed. The value was recorded on the dynamometer 

in Kilogram-force (KgF) and manually converted into 

Newton (N) according to the formula: 1 KgF = 9.81 N. 

We carried out this test in two scenarios, the first with 

only the proximal end closed with the rack and the 

second without the rack, but with external force (human 

hand on the proximal end).

We used a 3D printer of the Fused Deposition 

Modeling (FDM) type and polylactic acid (PLA) filament 

to print the forceps.

Easylap is made up of eight parts that were 

printed on a single printing tray, taking on average 12 

hours per forceps with the best printing quality. 

Assembly

After printing, all parts are polished for better 

fit, being assembled as shown in Figure 2. In addition, five 

screws with five nuts measuring 1.4mm x 6mm, already 

printed as shown in Figure 1, are positioned in predefined 

insertion locations and without the need for instruments 

cutting tool or drill to fit them. This addition generates 

greater stability of the handle and, consequently, better 

leverage.

Mechanical tests

First, the prototype was weighed on a precision 

scale, and measured with a caliper and protractor. To 

estimate the jaw grip strength, the forceps was placed at 

0º and its jaw was attached to a digital dynamometer that 

was subjected to manual traction until the forceps jaw 

Figure 1. Digital design of the printed and assembled forceps.

Figure 2. Assembly of the forceps: Part 1 is fitted inside part 2. The ball 
of part 1 is fitted into part 3. With this assembly formed, parts 4 and 5 
are fitted laterally at the proximal end and parts 6 and 7 at the distal end. 
Fitting part 8 at the proximal end is optional (rack).

of laparoscopic grasping forceps to the specific needs 

for 3D printing additive manufacturing, since some 

characteristics of plastic polymers, such as resistance and 

malleability, are different from the ones of the metal 

commonly used in surgical forceps.

Functional tests

Tests were performed in the laboratory using 

a validated abdominal cavity simulator – Endosuture 

Training Box® (Figures 3 and 4)10.

The forceps were introduced into the simulator 

using a 10 mm trocar and four tasks were performed:

1. Moving five beans in 15 tests (75 movements) 

without the rack.

2. Moving five beans in 15 tests (75 movements) 

with the rack.

3. Moving a 100-cm tubular rubber structure 

that simulates intestinal loops.

4. 360º-rotation of the forceps rod using the 

rotation mechanism for 100 consecutive times.

	 RESULTS

Assembled and screwed in, the forceps 

weighed 48 grams and measured 43 cm long when fully 

opened. Its shaft and closed jaws have a diameter of 

9 mm, 30º being the maximum opening jaw angle.

With this configuration, around R$ 17.00 were 

spent on raw materials (PLA) and R$ 2.00 on screws and 
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1.71N. In the same way, but without the rack and its 

proximal end closed by a human hand, the jaw remained 

closed until a force of 2.4N was reached.

In functional tests, the forceps were able to 

move five beans in 15 tests without a rack and in 15 tests 

with a rack (150 movements in total), as well as moving 

the tubular rubber for 100cm without jamming (Figure 

4). The rod rotation mechanism was effective, enduring 

100 complete rotations without locking.

	 DISCUSSION 

3D printing technology has brought numerous 

facilities to the technology development market, including 

in Medicine. However, a careful and responsible approach 

is necessary on the part of healthcare professionals, always 

based on ethical and scientific principles for tests and uses 

within the field. Given these aspects, because our study 

developed the forceps using PLA, a non-sterilizable plastic 

filament, our application is restricted to prototyping and 

training in laparoscopy and cannot be used for other 

purposes.

From this perspective, the driving factor behind 

this technology and what differentiates it from training 

clamps produced on a large scale is the possibility of 

customization and adjustments according to each user in 

all parts, that is, the forceps can adapt to the surgeon 

hand, length of the training box, diameter of the trocar, 

among other various combinations11,12.

In terms of costs, plastic printing allows for 

countless possibilities for printers and materials, with the 

cost being variable and completely dependent on these 

factors. Therefore, for tweezers prototyping, 3D printing 

is an essential tool for the developer, as it allows functional 

tests, such as those we performed, at affordable costs13,14. 

However, for the manufacture of forceps for everyday 

use, the resistance and durability of metal are superior to 

printed plastic, and no study on the durability of PLA in 

laparoscopic forceps has been carried out, making a more 

detailed cost-benefit approach impossible.

With mechanical-functional tests, it is possible 

to demonstrate that the plastic impression allows 

simulating the functional characteristics of laparoscopic 

grasping forceps, in addition to the rotation and rack-

locking mechanism. However, due to the limitations 

Figure 3. Side view of forceps inserted into a laparoscopic simulator..

Figure 4. Forceps being used in a laparoscopic simulator.

nuts, totaling R$ 19.00 in cost (around US$ 3.80 a 5.00 

USD/BRL exchange rate).

The closed forceps, coupled with the rack 

and without the help of external force (human hand), 

remained with the jaw closed with a force of up to 
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imposed by the material used, the resistance of the jaws 

is inferior to laparoscopic forceps, which reaches 8.9 N 

in similar tests14.

These results reinforce the possibility of using 

plastic printing for prototyping laparoscopic forceps, 

as well as for training in laparoscopy. However, more 

studies are needed to understand the impact of this 

mechanical difference on current teaching models.

	 CONCLUSION

It is possible to develop and print plastic 

laparoscopic grasping forceps on a 3D printer with the 

same functional characteristics as commercial forceps. 

Nonetheless, due to the material and technique used in 

this study, characteristics such as strength and resistance 

are not equivalent to the ones of conventional forceps.
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