Revista do Colégio Brasileiro de Cirurgiões
https://revistadocbc.org.br/article/doi/10.1590/0100-6991e-20243676
Revista do Colégio Brasileiro de Cirurgiões
Artigo Original

Os efeitos do ácido valpróico na cicatrização do plano músculoaponeurótico da parede abdominal: estudo experimental em ratos

Effects of valproic acid on wound healing of the abdominal wall musculoaponeurotic layer: an experimental study in rats

Rachel Biondo Simões; Maria de Lourdes Pessole Biondo Simões; Sérgio Ossamu Ioshi; Rogério Ribeiro Robes; Moacir Oliveira Dall'Antonia; Matheus Prince Goehr; Pedro Juan Furtado Neves

Downloads: 1
Views: 142

Resumo

Introdução: o ácido valpróico (VPA), droga epigenética, apresenta-se com potencial para o tratamento de neoplasias. Estudam-se seus efeitos sobre a cicatrização do plano peritônio-músculo-aponeurótico (PMA) da parede abdominal.

Método: sessenta ratos Wistar, foram alocados em dois grupos: o experimental (VPA) e o controle (cloreto de sódio 0,9%), tratados diariamente, iniciando três dias antes da intervenção e até a eutanásia. Sob anestesia, fez-se uma laparotomia mediana que foi reparada com dois planos de síntese. As avaliações aconteceram 3, 7 e 14 dias após a cirurgia. Estudou-se a integridade das feridas, a qualidade da reação inflamatória, a intensidade do infiltrado de leucócitos, a síntese do colágeno, a intensidade da angiogênese e a presença de miofibroblastos.

Resultados: o plano PMA mostrou-se deiscente em 11 dos 30 animais (p=0,001) do grupo experimento. Não houve diferença na qualidade da reação inflamatória e nem no infiltrado de leucócitos. A imuno-histoquímica revelou, no grupo experimento, menos colágeno I (p3=0,003, p7=0,013 e p14=0,001) e mais colágeno III (p3=0,003, p7=0,013 e p14= 0,001). Colágeno avaliado pelo Sirus Supra Red F3BA mostrou, no grupo experimento,menos colágeno nos três tempo (p<0,001) com menos colágeno I e colágeno III (p<0,001). Constatou-se menor número de vasos no 3º dia (p<0,001) e no 7º dia (p=0,001) e não afetou a quantidade de miofibroblastos.

Conclusão: o VPA mostrou deiscências do plano PMA, com reação inflamatória semelhante.ao controle, menor deposição de colágeno total e de colágeno I, menor atividade angiogênica, sem interferir na quantidade de miofibroblastos.

Palavras-chave

Ácido Valproico; Epigênese Genética; Cicatrização; Parede Abdominal 

Abstract

Introduction: valproic acid (VPA), an epigenetic drug, has potential for the treatment of neoplasms. Its effects on the healing of the peritoneal-musculo-aponeurotic plane (PMA) of the abdominal wall are studied.

Method: sixty Wistar rats were allocated into two groups: experimental (VPA) and control (0.9% sodium chloride), treated daily, starting three days before the intervention and until euthanasia. Under anesthesia, a median laparotomy was performed and repaired with two synthetic layers. Assessments took place 3, 7 and 14 days after surgery. The integrity of the wounds, the quality of the inflammatory reaction, the intensity of the leukocyte infiltrate, collagen synthesis, the intensity of angiogenesis and the presence of myofibroblasts were studied.

Results: there was dehiscence of the PMA plane in 11 of the 30 animals (p=0.001) in the experimental group. There was no difference in the quality and intensity of the inflammatory reaction. Immunohistochemistry revealed, in the experimental group, less collagen I (p3=0.003, p7=0.013 and p14=0.001) and more collagen III (p3=0.003, p7=0.013 and p14= 0.001). Collagen evaluated by Sirus Supra Red F3BA showed, in the experimental group, less collagen at all three times (p<0.001) with less collagen I and collagen III (p<0.001). A lower number of vessels was found on the 3rd day (p<0.001) and on the 7th day (p=0.001) and did not affect the number of myofibroblasts.

Conclusion: VPA showed dehiscence of the PMA plane, with less deposition of total collagen and collagen I, less angiogenic activity, without interfering with the number of myofibroblasts.

Keywords

Valproic Acid; Epigenesis, Genetic; Wound healing; Abdominal Wall

Referências

1 Padma VV. An overview of targeted cancer therapy. BioMedicine. 2015;5(4):1-6. doi: 10.7603/S40681-015-0019-4.

2 Organização Panamericana de Saúde (OPAS) / Organização Mundial da Saúde (OMS). Disponível em: paho.org/bra/índex.php

3 Instituto Nacional de Câncer - INCA. Estatísticas de câncer 2022, atualizada em 24 de novembro de 2022. Disponível em: https://www.gov.br/inca/pt-br/assuntos/cancer/numeros/

4 Ministério da Saúde - Instituto Nacional do Câncer. Disponível em: https://www.gov.br/inca/pt-br/assuntos/noticias/2022/inca-estima-704-mil-casos-de-cancer-por-ano-no-brasil-ate-2025.

5 Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5(1):37-50. doi: 10.1038/nrd1930.

6 Perri F, Longo F, Giuliano M, Sabbatino F, Favia G, Ionna F, et al. Epigenetic control of gene expression: Potential implications for cancer treatment. Crit Rev Oncol Hematol. 2017;111:166-72. doi: 10.1016/j.critrevonc.2017.01.020.

7 Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414. doi: 10.3390/ijms18071414.

8 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. doi: 10.1016/J.CELL.2011.02.013.

9 Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol. 2020;17(2):75-90. doi: 10.1038/S41571-019-0266-5.

10 Miranda Furtado CL, dos Santos Luciano MC, Silva Santos RD, Furtado GP, Noraes MO, Pessoa C. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics. 2019;14(12):1164-76. doi: 10.1080/15592294.2019.1640546.

11 Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC inhibitors on protein quality control systems: consequences for precision medicine in malignant disease. Front Cell Dev Biol. 2020;8:425. doi: 10.3389/fcell.2020.00425.

12 Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and câncer (review). Oncol Rep. 2014;31(2):523-32. doi: 10.3892/or.2013.2913.

13 Dimopoulos K, Grønbæk K. Epigenetic therapy in hematological cancers. APMIS 2019;127(5):316-28. doi: 10.1111/apm.12906.

14 Fontes Sousa M, Amorin M, Salta S, De Sousa SP, Henrique R, Jeónimo C. Predicting resistance to endocrine therapy in breast cancer: It's time for epigenetic biomarkers (Review). Oncol Rep. 2019;41(3):1431-8. doi: 10.3892/or.2019.6967.

15 Zucchetti B, Shimada AK, Katz A, Curigliano G. The role of histone deacetylase inhibitors in metastatic breast cancer. Breast. 2019;43:130-4. doi: 10.1016/j.breast.2018.12.001.

16 Monteiro-Reis S, Lobo J, Henrique R, Jerónimo C. Epigenetic mechanisms influencing epithelial to mesenchymal transition in bladder cancer. Int J Mol Sci. 2019;20(2):297. doi: 10.3390/ijms20020297.

17 Herrera-Solorio AM, Armas-López L, et al. Histone code and long non-coding RNAs (lncRNAs) aberrations in lung cancer: implications in the therapy response. Clin Epigenetics. 2017;9:98. doi: 10.1186/s13148-017-0398-3.

18 Duruisseaux M, Esteller M. Lung cancer epigenetics: from knowledge to applications. Semin Cancer Biol. 2018;51:116-28. doi: 10.1016/j.semcancer.2017.09.005.

19 Jiao J, Sagnelli M, Shi B, Fang Y, Shen Z, Tang T, et al. Genetic and epigenetic characteristics in ovarian tissues from polycystic ovary syndrome patients with irregular menstruation resemble those of ovarian cancer. BMC Endocr Disord. 2019;19(1):30. doi: 10.1186/s12902-019-0356-5.

20 Nowacka-Zawisza M. DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review). Oncol Rep. 2017;38(5):2587-96. doi: 10.3892/or.2017.5972.

21 González-Flores E, Hernández R, Álvarez PJ, Cabeza L, Perazzoli G, Zafra I, et al. DNA methylation patterns as molecular biomarkers: an overview in colorectal cancer. Eur J Anat. 2018;22(4):303-16. doi: 10.1177/1533034616682155.

22 Han T-S, Ban HS, Hur K, Cho H-S. The epigenetic regulation of HCC metastasis. Int. J. Mol. Sci. 2018;19(12):3978. doi: 10.3390/ijms19123978.

23 Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J. 2001;20,6969-78. doi: 10.1093/emboj/20.24.6969.

24 Kostrouchová M, Kostrouch Z, Kostrouchová M. Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biologica. 2007; 53(2):37-49.

25 Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010;2010:479364. doi: 10.1155/2010/479364.

26 Mummanemi P, Shord SS. Epigenetics and oncology. Pharmacotherapy. 2014;34(5):495-505. doi: 10.1002/phar.1408.

27 Heers H, Stanislow J, Harrelson J, Lee MW. Valproic acid as an adjunctive therapeutic agent for the treatment of breast cancer. Eur J Pharmacol. 2018;835:61-74. doi: 10.1016/j.ejphar.2018.07.057.

28 Gatla HR, Muniraj N, Thevkar P, Yavvari S, Sukhavasi S, Makena MR. Regulation of chemokines and cytokines by histone deacetylases and an update on histone decetylase inhibitors in human diseases. Int J Mol Sci. 2019;20(5):1110. doi: 10.3390/ijms20051110.

29 Reynolds MF, Sisk EC, Rasgon NL. Valproate and neuroendocrine changes in relation to women treated for epilepsy and bipolar disorder: a review. Curr Med Chem. 2007;14(26):2799-812. doi: 10.2174/092986707782360088.

30 Xu K, Yu FS. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci. 201;52(6):3301-8. doi: 10.1167/iovs.10-5670.

31 Byun SS, Kim FJ, Khandrika L, Kumar B, Koul S, Wilson S, et al. Differential effects of valproic acid on growth, proliferation and metastasis in HTB5 and HTB9 bladder cancer cell lines. Cancer Lett. 2009;281(2):196-202. doi: 10.1016/j.canlet.2009.02.045.

32 Osuka S, Takano S, Watanabe S, Ishikawa E, Yamamoto T, Matsumura A. Valproic acid inhibits angiogenesis in vitro and glioma angiogenesis in vivo in the brain. Neurol Med Chir (Tokyo). 2012;52(4):186-93. doi: 10.2176/nmc.52.186.

33 Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for câncer revisited: is there a role for combinations with immunotherapy? Angiogenesis.2017;20(2):185. doi: 10.1007/S10456-017-9552-Y.

34 Tonnesen MG, Feng X, Clark RAF. Angiogenesis in wound healing. J Invest Dermatol Symp Proc. 2000;5(1):40-6. doi: 10.1046/J.1087-0024.2000.00014.X.

35 Wallace HA, Basehore BM, Zito PM. Wound healing phases. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2017. Disponível em: https://europepmc.org/article/NBK/nbk470443.

36 Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58(1-2):81-94. doi: 10.1159/000454919.

37 Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 2008;34(3):206-22. doi: 10.1016/j.ctrv.2007.11.003.

38 Nasreddine W, Beydoun A. Valproate-induced thrombocytopenia: a prospective monotherapy study. Epilepsia. 2008;49(3):438-45. doi: 10.1111/j.1528-1167.2007.01429.x.

39 Vasudev K, Keown P, Gibb I, McAllister-Williams RH. Hematological effects of valproate in psychiatric patients: what are the risk factors? J Clin Psychopharmacol. 2010;30(3):282-5. doi: 10.1097/JCP.0b013e3181db2684.

40 Tseng, Y-T, HO P-S, Wang C-F, Liang C-S. Valproic acid-induced thrombocytopenia may cause wound nonhealing in individuals with schizophrenia.Psychosomatics. 2015;56(4):410-3. doi: 10.1016/j.psym.2014.02.007.

41 Cassidy MR, Sherburne AC, Heydrick SJ, Stucchi AF. Combined intraoperative administration of a histone deacetylase inhibitor and a neurokinin-1 receptor antagonist synergistically reduces intra-abdominal adhesion formation in a rat model. Surgery. 2015;157(3):581-9. doi: 10.1016/j.surg.2014.09.031.

42 Michaelis M, Michaelis UR, Fleming I, Suhan T, Cinatl J, Blaheta RA, et al. Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol. 2004;65(3):520-7. doi: 10.1124/mol.65.3.520.

43 Lee S, Zahoor M, Hwang J, Min DS, Choi K. Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility. PLoS One. 2012;7(11):e48791. doi: 10.1371/journal.pone.0048791.

44 Ala M, Razieh MJ, Hossein N, Mohammad RG, Ahmad RD. Sodium valproate improves skin flap survival via gamma-aminobutyric acid and histone deacetylase inhibitory system. J Surg Res. 2020;246(2):519-26. doi: 10.1016/j.jss.2019.00.036.

45 Bambakidis T, Dekker SE, Halaweish I, Liu B, Nikolian VC, Georgoff PE, et al. Valproic acid modulates platelet and coagulation function ex vivo. Blood Coagul Fibrinolysis. 2017;28(6):479-84. doi: 10.1097/MBC.0000000000000626.

46 Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol. 2007;257:143-79. doi: 10.1016/50074-7696(07)57004-X.

Biondo-Simões R, Biondo-Simões MLP, Ioshii SO, Robes RR, Dall'Antonia MO. The effects of valproic acido n skin healing: an experimental study in rats. Acta Cir Bras. 2022;37(4):e370403. doi.10.1590/acb370403.

48 Biondo-Simões MLP, Dall'Antonia MO, Goehr MP, Biondo-Simões R, Ioshii SO, Robes RR. Valproic acid and bladder healing: an experimental study in rats. Rev Col Bras Cir. 2022;49:e20223399. doi. 10.1590/0100-6991e-20223399-en.

49 Correa-Basurtoa AM, Romero-Castro A, Correa-Basurtoa J, Hernández-Rodríguez M, Soriano-Ursúa MA, García-Machorroe J, et al. Pharmacokinetics and tissue distribution of N-(2-hydroxyphenyl)-2-propylpentanamide in Wistar Rats and its binding properties to human serum albumin. J Pharm Biomed Anal. 2019;162:130-9. doi: 10.1016/j.jpba.2018.09.010.

50 Vizzotto Junior AO, Noronha L, Scheffel DLH, Campos AC. Influência da cisplatina administrada no pré e no pós-operatório sobre a cicatrização de anastomoses colônicas em ratos. J Bras Patol Med Lab. 2003;39(2):143-9. doi: 10.1590/S1676-24442003000200009.

51 Montes GS, Junqueira LC. The use of the picrosirius-polarization method for the study of the biopathology of collagen. Mem Inst Oswaldo Cruz. 1991;86 Suppl 3:1-11. doi:10.1590/s0074-02761991000700002.

52 Rittié L. Method for picrosirius red-polarization detection of collagen fibers in tissue sections. Methods Mol Biol. 2017;1627:395-407. doi: 10.1007/978-1-4939-7113-8_26.

53 Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981;29(4):577-80. doi: 10.1177/29.4.6166661.

54 Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. doi: 10.1126/scitranslmed.3009337.

55 Pastar I, Marjanovic J, Stone RC, Chen V, Burgess JL, Mervis JS, et al. Epigenetic regulation of cellular functions in wound healing. Exp Dermatol. 2021;30(8):1073-89. doi: 10.1111/exd.14325.

56 Lewis CJ, Stevenson A, Fear MW, Wood FM. A review of epigenetic regulation in wound healing: Implications for the future of wound care. Wound Repair Regen. 2020;28: 710-8. doi: 10.1111/wrr.12838.

57 Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep. 2015;16(11):1467-81. doi: 10.15252/embr.201540945.

58 Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care (New Rochelle). 2016;5(3):119-36. doi: 10.1089/wound2014.0561.

59 Hinz B. The role of myofibroblasts in wound healing. Curr Res Transl Med. 2016;64(4):171-7. doi: 10.1016/j.retram.2016.09.003

60 Brinkmann H, Dahler AL, Popa C, Serewko MM, Parsons PG, Gabrielli BG, et al. Histone hyperacetylation induced by histone deacetylase inhibitors is not sufficient to cause growth inhibition in human dermal fibroblasts. J Biol Chem. 2001;276(25):22491-9. doi: 10.1074/jbc.M100206200.

61 Spallotta F, Cencioni C, Straino S, Nanni S, Rosati J, Artuso S, et al. A nitric oxide-dependent cross-talk between class I and III histone deacetylases accelerates skin repair. J Biol Chem. 2013;288(16):11004-12. doi: 10.1074/jbc.M112.441816.

62 Tonini T, Rossi F, Claudio P. Molecular basis of angiogenesis and cancer. Oncogene. 2003;22:6549-56. doi: 10.1038/sj.onc.1206816.

63 Pozzi A, Zent R. Regulation of endothelial cell functions by basement membrane- and arachidonic acid-derived products. Wiley Interdiscip. Rev. Syst. Biol. Med. 2009;1:254-72. doi: 10.1002/wsbm.7.

64 Papapetropoulos A, García-Cardeña G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest. 1997;100(12):3131-9. doi: 10.1172/JCI119868.

65 Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399(6736):597-601. doi: 10.1038/21218.

66 Rössig L, Li H, Fisslthaler B, Urbich C, Fleming I, Förstermann U, et al. Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Cir Res. 2002;91(9):837-44. doi: 10.1161/01.res0000037983.07158.b1.
 




Submetido em:
23/10/2023

Aceito em:
10/03/2024

66ab983aa9539502c96eb5b4 rcbc Articles

RCBC

Share this page
Page Sections